Exact Travelling Wave Solutions for Some Nonlinear Equations Arising in Biology and Engineering
نویسندگان
چکیده
In this paper, the Exp -function method with the aid of symbolic computational system is used to obtain the exact travelling wave and solitary solutions of the Fitzhugh-Nagumo (FN), Modified Liouville equations and bi-directional Kaup-Kupershmidt (bKK) equation (sixth-order nonlinear equation). An attempt has been made to show the capabilities and wide-range applications of the Exp -function method. Some obtained solutions have also been comp ared and verified with the exact solutions in open literature. More importantly, other new and more general solutions for some above equations are also presented. These solutions may be seminal of significance for the explanation of some physical, biological and engineering problems. MCS (2010) No.: 35C07 • 74J30
منابع مشابه
Exact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملNew Exact Travelling Wave Solutions for Some Nonlinear Evolution Equations
In this paper sub-equation method with symbolic computational method is used for constructing the new exact travelling wave solutions for some nonlinear evolution equations arising in mathematical physics namely,the WBK, Z–K equation, and coupled nonlinear equations . As a result,the traveling wave solutions are obtained include, solitons, kinks and plane periodic solutions. It worthwhile to me...
متن کاملThe B"{a}cklund transformation method of Riccati equation to coupled Higgs field and Hamiltonian amplitude equations
In this paper, we establish new exact solutions for some complex nonlinear wave equations. The B"{a}cklund transformation method of Riccati equation is used to construct exact solutions of the Hamiltonian amplitude equation and the coupled Higgs field equation. This method presents a wide applicability to handling nonlinear wave equations. These equations play a very important role in mathemati...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013